High life satisfaction reported among small-scale societies with low incomes

Global polls have shown that people in high-income countries generally report being more satisfied with their lives than people in low-income countries. This persistence of this correlation, and its similarity to correlations between income and life satisfaction within countries, could lead to the impression that high levels of life satisfaction can only be achieved in wealthy societies. However, global polls have typically overlooked small-scale, nonindustrialized societies, which can provide an alternative test of the consistency of this relationship. Here, we present results from a survey of 2,966 members of Indigenous and local communities among 19 globally distributed sites. We find that high average levels of life satisfaction, comparable to those of wealthy countries, are reported for numerous populations that have very low monetary incomes. Our results are consistent with the notion that human societies can support very satisfying lives for their members without necessarily requiring high degrees of monetary wealth.

Subjective well-being | happiness | Indigenous Peoples | monetary income | wealth

One of the most robust findings of happiness research has been a strong correlation between reported life evaluation scores and income. Life evaluations are commonly measured by asking people for a numerical response to a single question, either the Cantril Ladder, which asks participants to associate their life with a step on an imaginary ladder, or a more straightforward satisfaction with life (SWL) question (1). Life evaluations are frequently taken as holistic measures of well-being and are playing an increasingly prominent role in setting policy agendas (2).

The correlation between income and life evaluation scores has been repeatedly shown for individuals within countries (3–5), as well as at the national scale using Gross Domestic Product (GDP) per capita as a proxy for income (6–9). For example, in the 2022 edition of the World Happiness Report (10), no country with GDP per capita under US$ 4,500 per year reported an average Cantril ladder score above 5.5 (on a scale of 0 to 10). Conversely, scores exceeding 7 out of 10 were only reported in countries where GDP per capita exceeded US$ 40,000 per year. When statistical models are used to predict the variation in score between countries, GDP per capita typically emerges as a dominant predictor (10).

Yet, although the correlation of life evaluations with GDP per capita across countries is robust, there are both empirical and theoretical reasons to question the degree to which the widely reported relationship reflects a universal human tendency. One line of questioning arose from the finding that life evaluations within a country do not increase over time as GDP per capita increases, a phenomenon known as the Easterlin paradox (11, 12). This paradox is often attributed to a combination of adaptation, by which people become accustomed to material wealth over time (13–15), and social comparison, by which people gain satisfaction from their wealth when it appears large relative to others, irrespective of what it represents in absolute terms (16). A complementary line of questioning focuses on the fact that the psychological basis of emotions evolved in ancient times when material wealth was very limited, implying that there should be no direct link to absolute levels of material affluence beyond those required to fulfill basic necessities (17, 18). Happiness research has frequently focused on industrialized cultures that are neither historically nor cross-culturally representative (19), potentially biasing the perspective on the relationship between material wealth and life evaluations (20–22).

Intriguingly, prior research in a handful of nonindustrialized societies with low levels of monetary wealth and income has shown reports of remarkably high levels of subjective well-being | happiness | Indigenous Peoples | monetary income | wealth

Significance
It is often said that money can't buy happiness, yet many surveys have shown that richer people tend to report being more satisfied with their lives. This tendency could be taken to indicate that high material wealth—as measured in monetary terms—is a necessary ingredient for happiness. Here, we show new survey results from people living in small-scale societies outside the globalized mainstream, many of whom identify as Indigenous. Despite having little monetary income, the respondents frequently report being very satisfied with their lives, and some communities report satisfaction scores similar to the wealthiest countries. These results imply greater flexibility in the means to achieve happiness than is apparent from surveys that examine only industrialized societies.

Reviewers: R.A.E., University of Southern California; A.F.-I.-C., Spanish National Research Council; and S.O., University of Chicago.

The authors declare no competing interest.

Copyright © 2024 the Author(s). Published by PNAS.

This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).

To whom correspondence may be addressed. Email: victoria.reyes@uab.es

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2311703121/-/DCSupplemental.

Published XXXX.
well-being (22–28). Together, these lines of argument challenge the idea that low monetary wealth at the community level should reliably predict low life evaluations, i.e., that monetary wealth is a requirement for achieving high life evaluations. Despite these challenges, a recent review states that “the consensus today is that the wealth of nations is closely associated with whether residents can live their lives close to their ideal.” (29). The tacit message implied by this consensus is important for life on Earth. If a high level of material wealth is inherently required for people to live life close to their ideals, achieving high life satisfaction for all humans would presumably require much greater rates of material extraction than at present (30). Policies based on this paradigm are likely to intensify environmental pressures by sacrificing ecosystems to increase material production (31) and are likely to surpass planetary boundaries (32). Given its practical implications, assessing the universality of the wealth-satisfaction link is urgent and requires sampling a wide realm of societies that encompass very different modes of life. Small-scale societies living in close contact with nature, on the fringes of globalized mainstream society, offer distinctly valuable perspectives in this regard. Here, we show results from a large, globally coordinated survey including a diverse collection of Indigenous Peoples and local communities at 19 sites spanning five continents (Fig. 1). These small-scale societies were selected for a study designed to assess local knowledge of climate change impacts, and a life evaluation question was included in the standardized survey. All study sites share a strong dependence on nature for livelihoods, but otherwise span a wide range of societal, cultural, and environmental features (33). Following standard practice, we asked survey participants to rate their life satisfaction on a scale of 0 to 10 (Methods). Because cash income is typically irregular in societies with nature-dependent livelihoods (34) and only 64% of the households surveyed received any cash at all during the study period, we use persistent material assets as a proxy to estimate monetary income per person (Methods).

We compare the average reported life satisfaction score at each site (n = 19 sites; 2,966 participants) with life evaluation scores obtained by the Gallup World Poll (10), which provides the most comprehensive global coverage of any subjective well-being dataset, including a large number of low-income nations (Fig. 2A). The Gallup World Poll results (purple circles) show the familiar pattern, whereby high life evaluation scores only occur in high-income countries. In contrast, our small-scale societies report a large range of life satisfaction scores (orange circles), even at low income, and four sites display very high values (>8). The average reported life satisfaction among our 19 surveyed small-scale societies is 6.8 out of 10, even though most of the sites have estimated annual monetary incomes of less than US$1,000 per person. We also include results of the life satisfaction question from the most recent round of the World Values Survey (Wave 7, blue circles), which includes 40% of the countries sampled by the Gallup World Poll (35). The average life evaluations for Gallup and WVS (Value World Survey) are similar above per capita GDP of USD$25,000 but, notably, the WVS shows a greater proportion of high life evaluations among low-income countries than Gallup. Caution must be taken with the direct numerical comparison between the life satisfaction and Cantril ladder questions, given that they have been found to produce different answers when asked within the same population. Where they have been directly compared for earlier waves of the WVS, the life satisfaction question has been found to systematically result in responses 0.3 to 0.6 points higher than the Cantril ladder (1, 36–38) with larger discrepancies at low incomes (37). We find that the difference with Gallup is larger for the most recent Wave 7, with an average reported value that is 1.0 higher for the same countries. This discrepancy may reflect a stronger inherent association of income with the Cantril ladder question, due to the phrasing, which could explain the larger systematic difference at low incomes (37). Regardless, a number of the small-scale societies stand out as reporting particularly high life satisfaction, especially given their very low monetary incomes.

The data shown in Fig. 2A are replotted in Fig. 2B, with income on a logarithmic axis. The purple regression line shows the highly significant correlation with log(income) that has been previously identified for the Gallup data (P < 10⁻²⁰). Although the small-scale societies report much higher life evaluations for a given income than the Gallup data, they are nonetheless significantly correlated with log(income) as well (P = 0.01). The World Values Survey Wave 7 data are not significantly correlated with log(income). Intriguingly, the slope of the Gallup regression (1.2, [1.1, 1.4]) overlaps with that of the small-scale societies (0.9, [0.3, 1.5]) within their 95% CIs. But despite this apparent similarity of slopes, the intercepts of the regressions are very different, with the Gallup intercept of 0.2 [0.5, 0.9] falling far below the small-scale society intercept of 4.7 [3.0, 6.2]. In other words, the baseline reported satisfaction among the small-scale societies is much higher, at a given level of income, than implied by the Gallup data. We conducted further regression analyses of life satisfaction vs. log(income) among the small-scale societies, both within and across villages, in order to test the robustness of the apparent correlation (Methods). The results, as summarized in Table 1, reveal

1 Ba
2 Bassari Country
3 Bulgan soum
4 Chiредzi
5 Darjeeling
6 Ilizi
7 Juruа River
8 Kumbungu
9 Laprik
10 Lonquimay
11 Mafia Island
12 Ordos Desert
13 Amambay
14 Puna
15 Shangri-la county
16 Tsimane’ territory
17 Turkana
18 Vavatenina
19 Western highlands

Fig. 1. Locations of the study sites. For further details about the study sites, see Methods.
wealth (a positive correlation with village wealth), or both. Importantly, the individual-level models that do not include village controls (models 2 and 4) account for only a very small fraction of the total variance in individual life satisfaction ($R^2 = 0.05$). In contrast, the model with village control variables explains a much larger fraction of the individual variance ($R^2_{adj} = 0.35$), indicating that village-level characteristics which are unrelated to average monetary wealth are responsible for a greater proportion of the variations in individual life satisfaction than the estimated individual wealth. In fact, when these village-level characteristics are included, individual monetary wealth does not provide significant additional predictive power for reported life satisfaction (SI Appendix, Supplementary Table, Models 5 and 8).

Taken together, our results suggest that greater material wealth can tend to be associated with more positive life evaluations within the context of small-scale societies, as has been widely identified in industrialized societies. However, the variations in individual wealth explain only a very small part of the variation in life satisfaction, and the most robust aspect of our findings is that most of the surveyed small-scale societies achieve much higher levels of satisfaction, at a given level of wealth, than the Gallup national averages.

The answers provided to life satisfaction questions have been shown to depend on numerous factors that vary by society (38–41). Of potential concern to our work is the fact that, in some of the study communities, respondents might make relatively infrequent use of numerical scales in their daily lives. However, subsets of the study communities that used visual aids for the numerical scale, or where leading examples were provided, did not differ significantly in average life satisfaction (Methods). In addition, prior work among minimally monetized communities found consistent relationships between reported positive affective states and life satisfaction (26). Furthermore, although ref. 42 has reported response patterns which emphasize top, middle, and bottom values on the scale in certain population segments (the “focal values” problem), no systematic pattern is apparent across the distributions we collected (Fig. 3). Given the absence of obvious methodological inconsistency, we do not see any reason to consider the responses obtained in our survey to be less reliable than the responses provided to other international polls.

Our results show that remarkably high measures of subjective well-being are widespread among the 19 small-scale societies studied. Qualitatively similar results have been previously found by independent studies in Australia (43), Tanzania (24), Alaska (28) and the western tropical Pacific (26). It is important to note that life satisfaction is not uniformly high at all of our sites, with some sites reporting averages as low as 5.1. This might be expected, given that some of these communities face hardships in meeting basic needs and ensuring health (44), and many have endured oppression, disenfranchisement, and marginalization (45). These pressures can exacerbate legacies of intergenerational trauma and

![Image](62x420 to 273x557)

![Image](67x602 to 275x741)

Table 1. Regression model results

<table>
<thead>
<tr>
<th>Model</th>
<th>Villages</th>
<th>Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Village average log(assets/capita)</td>
<td>0.25*(±0.09)</td>
<td>0.19*(±0.07)</td>
</tr>
<tr>
<td>Respondent household log(assets/capita)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>5.6 (±0.7)</td>
<td>5.7 (±0.3)</td>
</tr>
<tr>
<td>Village control included</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>R^2_{adj}</td>
<td>0.1</td>
<td>0.05</td>
</tr>
</tbody>
</table>

The first two rows give the regression coefficients for the specified predictor variables, in boldface where statistically significant ($P < 0.1$) and with * and † indicating high significance ($P < 0.01$) and very high significance ($P < 0.001$), respectively. Values in parentheses indicate 1 SE ranges.
reduced cultural engagement, leading to declines in peoples’ mental well-being (46). Nonetheless, high life satisfaction appears to be commonly reported among the small-scale societies that have been surveyed, despite very low rates of monetary income.

Prior work has empirically linked life evaluation to factors that have no inherent market cost and could therefore support high life satisfaction independently of monetary wealth or income. For example, social support, trust, and freedom are widely identified as important factors, as are the absence of corruption (38, 47, 48). Nonmaterial factors such as these have been specifically identified among Indigenous Peoples and local communities. For contemporary Inuit of the Arctic, happiness has been associated with family relations and participation in the social world (49), while relations with other people, with nature, and with spiritual beings appear central for the subjective well-being of other Native Americans (50), Amazonian Indigenous communities (51) and Aboriginal Australians (52). Among numerous Andean Indigenous Peoples, concepts of “the good life” or “living well” emphasize the importance of maintaining harmonious interpersonal relationships, some of which extend to nonhumans and spirits (53, 54).

Observational studies in western societies have also suggested that spending time in natural surroundings raises life satisfaction (55), which may play an additional role at our sites.

The striking aspect of our findings, particularly compared to the widely cited Gallup World Poll, is that reported life satisfaction in very low-income communities can meet and even exceed that reported at the highest average levels of material wealth provided by industrial ways of life. This is at odds with the consensus view given in ref. 29, but is consistent with previous cross-cultural studies of subjective well-being suggesting that most people are fairly happy by default (23, 56). It also underscores the dominant role that nonmaterial factors, such as social support and trust, could play in raising the future happiness of peoples across the world (57).

Our findings provide strong empirical support for the argument that achieving high reported life satisfaction does not require the elevated rates of material consumption generally associated with high monetary income. Instead, they add weight to the importance of identifying the underlying factors that cause people to report high satisfaction with their lives. It has long been known that nonmonetary factors are important to well-being—the insight here is that those factors can yield higher levels of satisfaction, at the population level, than previously identified. Further research into the factors supporting high levels of life satisfaction while maintaining low material requirements, as exemplified by the communities studied here, may provide unexplored strategies to improve the well-being of humans while navigating planetary boundaries.

Methods

The data presented here were collected through a total of 2,966 in-person interviews, carried out among 19 globally distributed sites in 18 countries. All surveys were part of the Local Indicators of Climate Change Impacts (LICCI) project, which aims to bring insights from Indigenous and local knowledge systems to climate research and followed a standardized protocol for data collection (33).

Sample Selection. All information reported pertains to Indigenous Peoples and local communities, according to the definition of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. These communities exist in rural areas in close interaction with the environment and are supported largely through use of nature.

The sites used here represent a subset of those included in the LICCI project, which were chosen according to their suitability to contribute to the LICCI goals of gathering local knowledge on climate change and impacts (33). Site selection was guided by the following criteria: prioritizing locations with deficient instrumental data and limited studies on local knowledge of climate change impacts; considering climate types to include representatives from the five main Köppen-Geiger-defined categories (tropical, arid, temperate, continental, and polar/cold); focusing on four nature-based livelihood activities (agriculture, fishing, pastoralism, and foraging); and assessing feasibility based on logistical considerations for establishing an extended network of partners responsible for data collection (33). These criteria resulted in a geographically dispersed and highly diverse collection of sites. To engage local partners, a widely circulated call emphasized criteria such as research experience and previous relations with the proposed study site, with a particular encouragement for South-based researchers to apply.

In each designated site, one research partner undertook the responsibility of gathering data across 3 to 5 villages, the lowest administrative unit in an area normally overseen by a village leader. The chosen villages were intended to be representative and relatively uniform in terms of both the environmental and sociocultural conditions specific to the site (33). Villages exhibiting atypical circumstances, such as those with significant donor intervention, were deliberately

Fig. 3. Responses to the life satisfaction question, by site. The number of responses for each numerical score is shown in italics and represented visually as histograms.
excluded. Additionally, for logistical efficiency, only villages with more than 20 households were selected for sampling, while those with more than 500 households were subdivided into smaller units.

To choose households (ranging from 75 to 125 per site), partners employed a simple random sampling, selecting households from a local census (33). The survey incorporated questions directed at both the household as a whole and the individuals within it (see SI Appendix for the exact survey questions). Household-related inquiries were addressed by anyone recognized as a household head, defined as the individual with the authority—whether through formal or informal means—to make decisions regarding the allocation of household labor and resources. Within each household, partners relied on convenience quota sampling among household heads to select one to independently answer individual questions. The distribution of individuals (varying between 125 and 175 per site) aimed for an approximately equal representation across gender and age categories.

Survey. Interviews were carried out in person, in the local language, by researchers working together with local assistants. The Gallup World Poll uses a similar in-person interview strategy for low-income countries where many people cannot read or write. All partners were trained to use the same protocol during three 1-week in-person workshops during 2019. At all sites local partners worked with interpreters who helped test the surveys, identifying possible points of confusion, and selecting the best wording. All questions were then tested with 10 people and adjusted if needed. The surveys included many sections, within which the life satisfaction question was consistently placed following questions about the household demographic and economic state, the local environment, dependence on natural resources, and the challenges of climate change. The length of interviews ranged between 40 and 90 min.

The SWL question was translated from “Considering all aspects, how satisfied are you with your life on a scale from 0 to 10?” Variants of this question have been widely used for decades, in many languages, including the German Socio-Economic Panel, the British Household Panel Survey, and the World Values Survey (see ref. 1 for an overview). The SWL question is shorter than the Cantril Ladder question, which is also frequently referred to as measuring life satisfaction, though the two questions are more accurately described as measuring life evaluation. Both questions have been validated across many cultures (38, 58).

Table 2 provides details on variations in how the life satisfaction question was adjusted to ensure comprehension among the different sites. At some sites, the question was immediately understood and no further expansion was given. For a subset of sites, additional expansion was provided in order to better clarify the intent of the question, for example anchoring the ends of the 11-point scale by contrasting “a very fine, happy life” with “an unsatisfying, heavy and difficult life.” For a small subset of sites, specific examples were given of life experiences that might be considered satisfying or unsatisfying (e.g., good/bad health, family problems, etc.). In addition, given that the abstract numerical scale appeared uninformative for some of the participants at some sites, the interviewers sometimes chose to use a visual aid for some or all of the participants. In this case they employed a line, which they described as showing a range from least satisfied at one end to most satisfied at the other end, on which the participant was asked to indicate their personal life satisfaction. Researchers then assigned a score based on the position on the line indicated by the participant.

Table 2. Sites included in the study

<table>
<thead>
<tr>
<th>Label</th>
<th>Site</th>
<th>Country</th>
<th>Group Name</th>
<th>Verbal expansion</th>
<th>Visual aid</th>
<th>Examples</th>
<th>SWL mean</th>
<th>SWL std</th>
<th>Household assets USD mean</th>
<th>Household assets USD std</th>
<th>Per capita assets USD mean</th>
<th>Per capita assets USD std</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ba Bassari Country</td>
<td>Fiji</td>
<td>iTaukei</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>155</td>
<td>7.4</td>
<td>$1655</td>
<td>$1286</td>
<td>$183</td>
<td>$669</td>
</tr>
<tr>
<td>2</td>
<td>Bassari</td>
<td>Senegal</td>
<td>Bassari</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>175</td>
<td>5.2</td>
<td>$1714</td>
<td>$1290</td>
<td>$27</td>
<td>$35</td>
</tr>
<tr>
<td>3</td>
<td>Bulgan soum</td>
<td>Mongolia</td>
<td>Mongolian</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>170</td>
<td>7.2</td>
<td>$10988</td>
<td>$10354</td>
<td>$1680</td>
<td>$1905</td>
</tr>
<tr>
<td>4</td>
<td>Chiredzi</td>
<td>Zimbabwe</td>
<td>Farmers</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>145</td>
<td>5.1</td>
<td>$71</td>
<td>$36</td>
<td>$4</td>
<td>$2</td>
</tr>
<tr>
<td>5</td>
<td>Darjeeling</td>
<td>India</td>
<td>Singalila</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>109</td>
<td>7.5</td>
<td>$673</td>
<td>$1365</td>
<td>$275</td>
<td>$876</td>
</tr>
<tr>
<td>6</td>
<td>Illizi</td>
<td>Algeria</td>
<td>Tuareg</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>120</td>
<td>7.1</td>
<td>$1290</td>
<td>$1290</td>
<td>$40</td>
<td>$45</td>
</tr>
<tr>
<td>7</td>
<td>Juruá River</td>
<td>Brazil</td>
<td>Riberinhos</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>163</td>
<td>8.4</td>
<td>$2213</td>
<td>$998</td>
<td>$232</td>
<td>$120</td>
</tr>
<tr>
<td>8</td>
<td>Kumbungu</td>
<td>Ghana</td>
<td>Dagomba</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>174</td>
<td>5.5</td>
<td>$1299</td>
<td>$1923</td>
<td>$40</td>
<td>$45</td>
</tr>
<tr>
<td>9</td>
<td>Laprak</td>
<td>Nepal</td>
<td>Gurun</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>133</td>
<td>6.9</td>
<td>$3311</td>
<td>$2340</td>
<td>$431</td>
<td>$331</td>
</tr>
<tr>
<td>10</td>
<td>Lonquimay</td>
<td>Chile</td>
<td>Mapuche-Pehuencuhe</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>74</td>
<td>8.1</td>
<td>$7853</td>
<td>$4413</td>
<td>$1291</td>
<td>$1011</td>
</tr>
<tr>
<td>11</td>
<td>Mafia Island</td>
<td>Tanzania</td>
<td>Fisherfolk</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>144</td>
<td>5.5</td>
<td>$1358</td>
<td>$1586</td>
<td>$117</td>
<td>$156</td>
</tr>
<tr>
<td>12</td>
<td>Ordes Desert</td>
<td>China</td>
<td>Mongolians</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>316</td>
<td>5.3</td>
<td>$32157</td>
<td>$9325</td>
<td>$4376</td>
<td>$2250</td>
</tr>
<tr>
<td>13</td>
<td>Amambay</td>
<td>Paraguay</td>
<td>Pai Tavyera/Guarani</td>
<td>No</td>
<td>No No No</td>
<td>166</td>
<td>8.2</td>
<td>$5237</td>
<td>$4214</td>
<td>$888</td>
<td>$866</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Puna</td>
<td>Argentina</td>
<td>Kolla-Atacameños</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>144</td>
<td>8.0</td>
<td>$4013</td>
<td>$1858</td>
<td>$600</td>
<td>$269</td>
</tr>
<tr>
<td>15</td>
<td>Shangri-la county</td>
<td>China</td>
<td>Tibetan</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>174</td>
<td>7.9</td>
<td>$42448</td>
<td>$28882</td>
<td>$3149</td>
<td>$2444</td>
</tr>
<tr>
<td>16</td>
<td>Tsimane' territory</td>
<td>Bolivia</td>
<td>Tsimane'</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>188</td>
<td>6.3</td>
<td>$1360</td>
<td>$1107</td>
<td>$141</td>
<td>$131</td>
</tr>
<tr>
<td>17</td>
<td>Turkana</td>
<td>Kenya</td>
<td>Daasanach Betsimisaraka</td>
<td>No</td>
<td>No No No</td>
<td>254</td>
<td>5.8</td>
<td>$471</td>
<td>$792</td>
<td>$43</td>
<td>$83</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Vavatenina</td>
<td>Madagascar</td>
<td>Farmers</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>39</td>
<td>5.3</td>
<td>$199</td>
<td>$267</td>
<td>$24</td>
<td>$30</td>
</tr>
<tr>
<td>19</td>
<td>Western highlands</td>
<td>Guatemala</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td>70</td>
<td>8.6</td>
<td>$3503</td>
<td>$5318</td>
<td>$560</td>
<td>$887</td>
</tr>
</tbody>
</table>
Fig. 4. Life satisfaction vs. income using a higher asset:income ratio. As in Fig. 1A, but assuming a value of 5 for the asset:income ratio among our study sites, more similar to asset:income ratios estimated for industrialized countries (40).

Because these methodological variations could conceivably introduce bias into the responses, we compared the means of the subpopulations. We found that the sites at which visual aids were used had a lower mean SWL (6.7, n = 6) than the remaining sites (6.8, n = 13), but the difference was not statistically significant. Similarly, the sites at which the question was expanded upon had an even lower mean SWL (6.6, n = 11) than those at which it was only asked verbatim (7.1, n = 8), which was not statistically significant. Finally, the sites at which specific examples were provided had a lower mean SWL (5.8, n = 4) than the sites at which expansion was given but examples were not provided (7.1, n = 15), which, again, was not statistically significant. Based on these comparisons, there is no evidence that the high reported SWL values represent an artifact based on how the question was posed.

Estimation of Income. A criterion for LICCI site selection was high dependence on nature for livelihood (33). As a result, income from wage labor and sales is often sporadic among the communities surveyed, and record-keeping of income is rare. Many activities are oriented toward supplying household needs, for which income and consumption can be confounded (34). In the aim of capturing long-term average incomes, we used the monetary value of commercial physical assets of study participants and then converted these to income using a range of asset:income ratios. We focused on commercial physical assets despite the fact that other locally produced assets may have a market price (e.g., livestock, plant-made assets such as canoes or utensils) because they are rarely purchased within these communities.

We calculated a representative monetary value of household commercial assets using the values for new equivalent goods in the local market. To select assets that capture variation in ownership of market assets across households in a site, we drew on participant observation and interviews with knowledgeable people in the village to first select a list of 15 assets that reflected such variation. We identified the 5 assets with the highest market values, owned by a few households (e.g., motorbike, refrigerator, television, tractor), 5 high-value assets owned by a large fraction of the community (e.g., shotgun, fishing net, mobile phone) and 5 of the most common assets (e.g., machete, cooking pot). We tested variation in assets ownership by including the 15 assets in a draft version of the survey that was tested with 10 households. We then selected the 10 assets displaying most variation across households in each site. We also collected the prices of these assets in the local market. Household wealth was calculated as the product of the number of assets owned by the household, multiplied by the local market price of a new asset (33).

For comparison with national incomes estimated from GDP per capita, we converted the individual asset values to estimated annual income using a fixed ratio for all communities and divided by household size. Fig. 4 shows the equivalent of Fig. 1A using an asset:income ratio of 5, an assumption under which the occurrence of high life satisfaction at low levels of wealth is far more pronounced.

The magnitude of incomes estimated here is similar to income estimates made by the Poverty Environmental Network (PEN) study. The PEN study estimated income for 33 tropical communities that bore many similarities with the communities studied here (34). Across these communities, the average annual cash income from wages and business was $505 USD per adult (purchasing power parity, PPP). Accounting for inflation, this is equivalent to $593 USD per adult in 2018 (PPP). For comparison, the average for all sites in our dataset is $1559 USD per person (PPP, 2018) using an asset:income ratio of 1, or $520 USD per person using an asset:income ratio of 3.

Ref. 34 also estimated the values of nonmonetary income sources. When including imputed values of crops, livestock and other income, the average income was $1326 USD per adult, and when estimated values for forest and other environmental products were also included the average total income was $1852 USD per adult. Accounting for inflation, this is equivalent to $2174 USD per adult in 2018 (PPP). An equivalent comparison to that shown in Fig. 2 (life satisfaction vs. income) is given for wealth in Fig. 5, showing that the overall comparison is very robust regardless of whether the estimate of wealth or income is used.

Comparison with Gallup World Poll and WVS Results. Gallup World Poll asks the Cantril ladder question "Please imagine a ladder with steps numbered from 0 at the bottom to 10 at the top. The top of the ladder represents the best possible life for you and the bottom of the ladder represents the worst possible life for you. On which step of the ladder would you say you personally feel you stand at this time?"

Fig. 5. Life satisfaction vs. wealth. As in Fig. 2, but for estimates of wealth, rather than income. Purple symbols show national averages for the Gallup World Poll and blue symbols show national average for the WVS wave 7, both using the produced capital measure from ref. 60. Orange symbols show our results for small-scale societies. Panel (B) shows the same data as panel (A) but wealth is plotted on a logarithmic axis.
The WVS Wave 7 asks the question: “All things considered, how satisfied are you
with your life as a whole these days? Using this card on which 1 means you are
‘completely dissatisfied’ and 10 means you are ‘completely satisfied’ where would you
put your satisfaction with your life as a whole?”. In order to compare the
10-point WVS answer with the 11-point scale used in our survey and by Gallup,
we linearly rescaled the WVS responses by subtracting 1 and multiplying by 1.11.

Regression Analysis. We regressed the life satisfaction scores against estimated
household incomes (total and per capita) at both the village and individual levels
for the 2,814 respondents for which household income estimates were available.
For the individual-level regressions, we tested the effect of village dummy
variables as well as the village average income. The estimates in Table 1 were
made using Ordinary Least Squares (OLS). Following a common convention in
the literature, we also estimated ordered logit models for the respondent-level
data. These are presented in SI Appendix, Table S1 and show qualitatively identical
findings. The ordered logit model drops the assumption that the meanings (i.e.,
the latent well-being value) of different life satisfaction responses are equally
spaced. SI Appendix, Table S1 shows raw coefficients, which are quantitatively
comparable with OLS coefficients for small values [marginal effects can be calcu-
lated more precisely by transforming the raw coefficients to exp(f)-1].

The results are significant at the 1% level or higher for all models that use
the household income per capita. Regression slopes range from 0.10 to 0.25
and are largely consistent across the two measures of income, as well as the
two types of model. The variance explained by individual-level differences is
small compared with the village-level variance, as estimated from a model with
only village dummy variables. This result suggests that more of the variance
in individual life satisfaction is related to characteristics that are common to a
village than to individual income and that these characteristics are unrelated to
the average income of the village.

Ethics and Inclusion. Ethics approval. The research protocol received approval from the Ethics
Committee of the Universtitat Autonoma de Barcelona (CEEAH 4781), and the
LICC project adheres to the ethical guidelines of the European Research Council.
An external and independent ethics advisor thoroughly reviewed all procedures
and documents, providing continuous feedback to the team and reporting to
the project funders. As outlined in the protocol, prior to commencing data collec-
tion, all partners were required to secure Free, Prior and Informed Consent (FPIC)
from both the organizations representing the communities and the individual
respondents (33). During the initial village visit, partners conducted a meeting
to introduce the research and seek consent to stay in the village. In these meet-
ings, detailed information about the study’s objectives and scope, participant
involvement, as well as the associated costs and benefits was presented. Written
consent was obtained from the community as a whole and individual FPIC was
sought from each participant.

Inclusion in the research process. Local researchers were involved throughout
the research process. The LICCI research project was carried out through a partner-
ship of a core team of 10 researchers working at ICTA-UB (host institution) and
45 international partners. To recruit partners, a call was widely circulated, which
encouraged South-based researchers to apply. Priority was given to partners with
strong preexisting links with the sites where the study was conducted, as well as
those planning field work of greater than 12 months duration. For the 19 sites featured
here, 13 partners collected data in their own countries, and two self-identify as
Indigenous scholars. For the partners who are not from the country where they
collected data, one had worked in the study site for more than 5 years, another for
more than 10 years, and four had a planned a 1-year field work in the proposed site.

The core team designed the study and drafted the data collection instruments.
All partners attended a 1-week face-to-face training week at the host institution,
during which data collection instruments were refined and adapted to specific
cases (33). Through the training, partners were acquainted with the project’s
rationale, received comprehensive explanations regarding the implementation of
data collection protocols, and had the opportunity to engage in discussions
about practical aspects. The training sessions encompassed discussions on the
ethical considerations surrounding the incorporation of Indigenous knowledge
in research and the elaboration of a “Local Knowledge Research Agreement”
designed to discuss and negotiate with communities. During the training
workshop, partners also had the opportunity to discuss issues related to data
ownership and sharing.

Participants implemented the study in their selected site. Individual datasets
belong to partners who collected the data, who can publish them without the
core team. Researchers of the core team leading collective publications invite
any partner whose data is being used (a document with publication policies is
available upon request).

Benefit sharing. In community meetings, partners facilitated an open dialogue
that resulted in the establishment of a “community engagement protocol.” In this
dialogue, partners were given the opportunity to express their preferences on
how they wished the information to be returned and communicate any addi-
tional requirements they may have had. Information has been returned to the
site through community meetings, meeting local leaders, seminars at the local
host institutions (i.e., local universities or NGOs hosting the partner), and/or the
production of media (film or books).

Data, Materials, and Software Availability. Anonymized CSV data have been
 deposited in Dataverse (pending).

ACKNOWLEDGMENTS. We sincerely thank all the communities that generous-
ly donated their time to participate in this research. Ricardo Godoy and Arild
Angelsen provided thoughtful feedback on the manuscript.

Author affiliations: aInstitut de Ciència i Tecnologia Ambientals, Universitat Autònoma de
Barcelona, Cerdanyola del Vallès, Barcelona, Spain; bCREA, Barcelona, Spain; cDepartment of
Earth and Planetary Science, McGill University, Montreal, QC, Canada; dInstitute for Health and Social
Policy, McGill University, Montreal, QC, Canada; eBlier School of Environment, McGill University,
Montreal, QC, Canada; fWater Systems and Global Change Group, Wageningen University,
Wageningen, Netherlands; gInternational Water Management Institute, Battaramulla, Sri Lanka; hCenter for
Integrated Disaster Risk Management (CIGIDEN), Pontificia Universidad Católica de Chile, Santiago,
Chile; iCollege of Agriculture and Environmental Science, University of South Africa, Johannesburg,
South Africa; jFaculty of Social Sciences, University of Helsinki, Helsinki, Finland; kSchool of Environment,
McGill University, Montréal, QC, Canada; lGlobal Institute of Agricultural and Food Security,
University of Bari, Italy; mGlobal Institute of Agricultural and Food Security, University of Bari,
Italy; nOlivos, Spain; oInternational Development and Nutrition Research in Semi-Arid Areas, San
Salvador, El Salvador; pLaboratory of Agro-Biotechnology and Nutrition Research in Semi-Arid Areas,
San Salvador, El Salvador; qLaboratory of Agro-Biotechnology and Nutrition Research in Semi-Arid Areas,
San Salvador, El Salvador; rLaboratory of Agro-Biotechnology and Nutrition Research in Semi-Arid Areas,
San Salvador, El Salvador; sLaboratory of Agro-Biotechnology and Nutrition Research in Semi-Arid Areas,
San Salvador, El Salvador; tLaboratory of Agro-Biotechnology and Nutrition Research in Semi-Arid Areas,
San Salvador, El Salvador; uLaboratory of Agro-Biotechnology and Nutrition Research in Semi-Arid Areas,
San Salvador, El Salvador; vLaboratory of Agro-Biotechnology and Nutrition Research in Semi-Arid Areas,
San Salvador, El Salvador; wLaboratory of Agro-Biotechnology and Nutrition Research in Semi-Arid Areas,
San Salvador, El Salvador; xLaboratory of Agro-Biotechnology and Nutrition Research in Semi-Arid Areas,
San Salvador, El Salvador; yDepartment of Sociology and Anthropology, Peking University, Beijing,
China; zDepartment of Sociology and Anthropology, Peking University, Beijing, China.

2. P. Frietjes, A. E. Clark, C. Kecskel, R. Layard, A happy choice. Wellbeing as the goal of government,
3. M. A. Killingsworth, Experienced well-being rises with income, even above $75,000 per year.
5. T. Lomax, Exploring associations between income and wellbeing: New global insights from
7. B. Stevenson, J. Wolfers, Subjective well-being and income: Is there any evidence of saturation?
10. J. F. Helliwell et al., “World happiness report 2022” (Sustainable Development Solutions Network,
2022).
11. R. A. Easterlin, “Does economic growth improve the human lot? Some empirical evidence” in
12. J. F. Helliwell et al., “World happiness report 2022” (Sustainable Development Solutions Network,
2022).
14. T. Burchardt, Are one man’s rags another man’s riches? Identifying adaptive expectations using
15. E. Diener, R. E. Lucas, C. N. Solln, “Beyond the hedonic treadmill: Revisiting the adaptation theory

35. C. Haerpfer et al., World values survey: Round seven-country-pooled datafile version 4.0. (JD Systems Institute and WVS/World Values Survey, Madrid, Spain, 2022).

<table>
<thead>
<tr>
<th>Query reference</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Your article will appear in the following section of the journal: Social Sciences (Anthropology). Please confirm that this is correct.</td>
</tr>
<tr>
<td>Q2</td>
<td>Please review 1) the author affiliation and footnote symbols, 2) the order of the author names, and 3) the spelling of all author names, initials, and affiliations and confirm that they are correct as set.</td>
</tr>
<tr>
<td>Q3</td>
<td>Please note that the spelling of the following author names in the manuscript differs from the spelling provided in the article metadata: Santiago Álvarez-Fernández, André B Junqueira, Uttam Babu Shrestha, and Victoria Reyes-García. The spelling provided in the manuscript has been retained; please confirm.</td>
</tr>
<tr>
<td>Q4</td>
<td>Per PNAS style post codes are required in all affiliations. Please provide the same in affiliations a to y.</td>
</tr>
<tr>
<td>Q5</td>
<td>Per PNAS style abbreviations are not allowed in the affiliation. Please provide the expansion for ICREA, CIGIDEN, CONICET, and SENS.</td>
</tr>
<tr>
<td>Q6</td>
<td>Please include the division or department with which the author is associated in affiliations a, d to f, h to l, o, p, s, v, and w.</td>
</tr>
<tr>
<td>Q7</td>
<td>There is no provided division for affiliations g and u. Please provide if this is available.</td>
</tr>
<tr>
<td>Q8</td>
<td>Please check the edit made in the affiliations i and n.</td>
</tr>
<tr>
<td>Q9</td>
<td>There is no provided division/section/unit for affiliations b, m, n, q, and x. Please provide if this is available.</td>
</tr>
<tr>
<td>Q10</td>
<td>Per PNAS style city is required in all affiliations. Please provide the same in affiliation v.</td>
</tr>
<tr>
<td>Q11</td>
<td>Please review the author contribution footnote carefully. Ensure that the information is correct and that the correct author initials are listed. Note that the order of author initials matches the order of the author line per journal style. You may add contributions to the list in the footnote; however, funding may not be an author’s only contribution to the work.</td>
</tr>
<tr>
<td>Q12</td>
<td>Claims of priority or primacy are not allowed, per PNAS policy (https://www.pnas.org/authors/submitting-your-manuscript); please consider eliminating/rewording the usage of “new” throughout the article or explain why it should not be considered a priority claim and should be retained.</td>
</tr>
<tr>
<td>Q13</td>
<td>Certain compound terms are hyphenated when used as adjectives and unhyphenated when used as nouns. This style has been applied consistently throughout where (and if) applicable.</td>
</tr>
<tr>
<td>Q14</td>
<td>You have chosen to publish your PNAS article with the immediate open access option under a CC BY license. Your article will be freely accessible immediately upon publication; for additional details, please refer to the PNAS site: https://www.pnas.org/authors/fees-and-licenses. Please confirm this is correct.</td>
</tr>
<tr>
<td>Q15</td>
<td>Would you consider changing “score” to “scores”?</td>
</tr>
<tr>
<td>Q16</td>
<td>In Fig. 2, the locant “A” is mentioned in the artwork, but it is not described in the legend. Please check.</td>
</tr>
<tr>
<td>Q17</td>
<td>“Models 6 and 9” and “Models 5 and 8” have been cited along with the supplementary table. However, these terms/headers are not mentioned in the supplementary table. Please check and update as needed.</td>
</tr>
<tr>
<td>Q18</td>
<td>Abbreviations must be used at least twice in the main text; as such IPBES has been deleted.</td>
</tr>
<tr>
<td>Q19</td>
<td>Per PNAS style, locants must be explained in alphabetical order in the legend. Hence, please check and revise the legends of Fig. 5 accordingly.</td>
</tr>
<tr>
<td>Q20</td>
<td>Please check the usage of “sypes.”</td>
</tr>
<tr>
<td>Q21</td>
<td>Please check and confirm whether the hierarchy of the heading levels is correct as set.</td>
</tr>
<tr>
<td>Q22</td>
<td>Would you consider rephrasing the sentence “For the partners who…” for better clarity?</td>
</tr>
<tr>
<td>Q23</td>
<td>Would you consider rephrasing the sentence “Individual datasets…” for better clarity?</td>
</tr>
<tr>
<td>Q24</td>
<td>PNAS articles should be accessible to a broad scientific audience; as such, please spell out the abbreviation NGO.</td>
</tr>
<tr>
<td>Q25</td>
<td>Note that all data deposited in a publicly accessible database (and therefore not directly available in the paper or SI) must be cited in the text with an entry in the reference list. References must include the following information: 1) author names, 2) data/page title, 3) database name, 4) a direct URL to the data, 5) the date on which the data were accessed or deposited (not the release date). For an example reference entry, visit https://www.pnas.org/author-center/submitting-your-manuscript#manuscript-formatting-guidelines. Please also indicate where the new reference citation should be added in the main text and/or data availability statement.</td>
</tr>
<tr>
<td>Q26</td>
<td>If you have any changes to your Supporting Information (SI) file(s), please provide revised, ready-to-publish replacement files without annotations.</td>
</tr>
<tr>
<td>Q27</td>
<td>Please provide report number for refs. 10 and 41.</td>
</tr>
<tr>
<td>Q28</td>
<td>Please provide editor name for refs. 11, 14, 49, 51, and 52.</td>
</tr>
<tr>
<td>Q29</td>
<td>Please provide publisher location for refs. 10 and 41.</td>
</tr>
<tr>
<td>Q30</td>
<td>Please provide the accessed date (DD/MM/YYYY) for ref. 42.</td>
</tr>
</tbody>
</table>